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The nonlinear properties of finite-amplitude water waves are modelied by a numerical 
method based on the Marker and Cell technique. The paper introduces the Stanford 
University Modified MAC (SUMMAC) code which is shown to be a valid tool for 
analyzing incompressible flows with a free surface under transient conditions. The 
method is applied as an example to the run up of a solitary wave on a vertical wall. 
The results are compared critically with available experimental data. 

1. INTRODUCTION 

An understanding of wave actions is of vital importance in the design of many 
coastline and harbor structures. A number of failures in the past stemmed from 
inadequate design which was the consequence of man’s limited knowledge about 
the great ocean storm waves and tsunamis or seismic sea waves. A review of the 
literature of coastal engineering [l] indicates that the action of water waves in 
the shallower regions near the shore or the surf zone is known only in terms of 
the results of experiments and model tests on specific configurations. In addition, 
the difficulties of making experimental measurements under transient conditions 
prevent us from acquiring more than a superficial knowledge of the total wave 
action. 

Because of their finite amplitudes, the mathematical description of large water 
waves in shallow water is necessarily nonlinear [2]. The importance of non- 
linearity excludes the possibility of employing the linearized theory which is based 
on the assumption of small amplitudes [3]. Despite the fact that an increasing 
number of nonlinear theories are available, applications to practical problems are 
seriously restricted by the limiting assumptions inherent in these theories. The most 
common limitations include admissible boundary geometries, restriction to 
infinite domain, nonuniform satisfaction of the essential free-surface boundary 
conditions, etc. It appears that comprehensive theoretical tools are needed to 
provide adequate descriptions of the steady and unsteady motion of finite-amplitude 
water waves in the near-shore zone. 
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In view of the continuing and extremely rapid development of high-speed 
digital computers, we turned to the development of numerical methods as tools 
for wave analysis. A purpose of this paper is to demonstrate the validity of one 
numerical method by applying it to a simple, yet practical, problem whose solution 
properties are well-known and experimentally documented. The employment of 
our numerical method in more complex problems is discussed at the close of the 
presentation. 
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FIG. 1. Definition sketch showing a solitary wave in a channel 

This paper deals with the motion of a solitary wave (Fig. 1). A solitary wave is a 
wave consisting of a single elevation of fluid, of height HO not necessarily small 
compared with the total depth d of the fluid. If properly started, this wave may 
travel for a considerable distance along a uniform canal, with little or no change 
of form [3]. Following Jordaan’s [4] argument, Camfield and Street [5] suggested 
that, to study the shoaling, breaking and run-up characteristics of catastrophic 
ocean waves, it is reasonable to begin by generating and studying simple finite- 
amplitude waves such as the solitary wave. Because of the availability of a large 
amount of analytic results and experimental data on this wave, in addition to its 
practical importance, we have also selected the solitary wave as the medium for 
the illustration and testing of our numerical method. The objectives of the work 
were two-fold. First, we wished to show that the numerical technique provides 
satisfactory predictions of the run-up on a vertical wall. Secondly, we wished 
to advance the methodology of the Marker and Cell (MAC) numerical technique 
[6, 7] and deveIop a valid tool for the anaIysis of two-dimensional, nonlinear 
motions. 
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The computations were performed on an IBM 360/67 system. Graphic outputs 
of the wave profiles were obtained through the use of a CALCOMP plotter. 

2. THE MARKER AND CELL METHOD 

The numerical scheme employed in this work is based on the Marker and 
Cell (MAC) method originally developed at the Los Alamos Scientific Laboratory, 
University of California [6, 71. Welch, et al., [6J gave a detailed description of 
their original method, flow charts for computations and several examples of 
numerical solutions. 

Basically the method obtains the solution to a set of finite-difference equations 
that are derived from the partial differential equations and boundary conditions 
of viscous fluid flow in two space dimensions. The essential physical principles 
used are the conservation of mass and the momentum theorem (the Navier-Stokes 
equations). Only nonturbulent flows are considered. Pressure and velocity-the 
important dependent variables for water waves-are used directly as the primary 
field variables. A straightforward differencing scheme is used; however, the 
primary requirement imposed was that both mass conservation and momentum 
theorem principles be satisfied rigorously in the difference equations as they were 
in the original differential equations. The method makes use of a rectangular grid 
of Eulerian calculation cells, in each of which the fluid is characterized by average 
values of the field variables. The flow boundary conditions are derived from the 
finite-difference momentum equations and certain symmetry conditions. The 
initial conditions of a given problem are easily set and operation of the MAC 
method is then quite simple. Massless “marker” particles are identified along 
any free surfaces of the problem; these “markers,” i.e., the free surface, are 
advanced in each time step to new positions in accordance with a simple kinematic 
relation between the surface geometry and fluid velocities. 

The original version of the MAC method was used in the early stages of the 
present investigation. The results were not satisfactory. The computed free-surface 
profiles were very ragged, indicating considerable errors originating from the 
treatment of free-surface boundary conditions. Several modifications were made 
and the result is a quite satisfying procedure. As these changes have a distinct 
effect on the accuracy of solutions, the changes are described in separate sections. 

3. GOVERNING EQUATIONS AND AUXILIARY CONDITIONS 

The Navier-Stokes equations are used in the MAC method. When the conserva- 
tion of mass equation is included and the suitable boundary and initial conditions 
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are specified, the Navier-Stokes equations are sufficient to determine fluid flow 
patterns uniquely. Viscous terms are retained in the following derivations and 
the associated computer program for the sake of generality and so that the program 
could be used later to study viscous effects and for possible turbulence simulation 
without major modification. In the present study of water waves, the viscosity 
was set to zero in the computations, This is consistent with the “free-slip” boundary 
condition at walls and the free-surface condition described below. 

For an incompressible flow the Navier-Stokes equations in two dimensions 
can be written in the form 

and the conservation of mass equation is 

Here, x and y are the coordinates of a fixed Cartesian system; u and 0 are the 
velocity components in the x- and y-directions, respectively; 4 is the ratio of 
pressure p to the constant density p of the fluid (i.e., $ = p/p); g, and g, are the 
x and y components of the body acceleration (gravity); and Y is the kinematic 
viscosity of the fluid. If the field variables U, U, and q5 are defined at the locations 
shown in Fig. 2, then it can be shown, by integrating over a fixed control volume, 

FIG. 2. Position of field variables 
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that the finite-difference representations of Eqs. (1) and (2) satisfy the momentum 
principle rigorously [6]. 

Equations (1) and (2) provide a means of computing au/at and &~/at so that the 
data of u and u can be updated. But this updating procedure requires knowledge 
of &j/ax and &@y. Thus, we define 

and the continuity equation becomes 

D = 0. (5) 

Operating with a/ax on Eq. (1) and with a/ay on Eq. (2), using P/ax at = a2/at ax 
and a2/ay at = a2/at ay, and then adding the resulting equations, we have 

where 

Equations (l), (2), (5), and (6) constitute the basic equations from which a finite- 
difference scheme can be readily developed. The need for retention of the D terms 
in Eq. (6) is reviewed in Section 4. 

Two types of boundary conditions are employed in our work. First, let qN and qr 
be the velocity components, normal and tangential, respectively, to a solid wall. 
For water waves, the effect of viscosity and hence boundary layers is small; 
accordingly, at the wall we use a “free-slip” boundary condition [6]: qN = 0 
and aqT/aN = 0, which corresponds in fact to the condition for inviscid, irro- 
tational flow at a wall. Second, the free surface as defined here is the interface 
between a liquid and a massless gas, i.e., between the water in the waves and the 
(relatively) massless air above the wave. Generally speaking, the stress tangential 
to the surface must vanish and the stress normal to the surface must exactly 
balance any externally applied normal stress. However, for incompressible fluids 
with low viscosity, such as water, it is sufficiently accurate to use only the single 
condition 4 = & in lieu of the normal and tangential stress conditions [6]. 
Under usual circumstances C& = 0, but we can also specify $a = f(x, t) along the 
free surface to generate waves impulsively. 

4. FINITE-DIFFERENCE REPRESENTATIONS 

In order to solve the above partial differential equations by a finite-difference 
scheme [6], the computation region is divided into a number of rectangular cells 
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(Fig. 3). Each cell is named or “flagged” as being of a certain type, depending on 
whether the cell represents a solid wall, a free surface, empty space, a cell full 
of fluid, and/or a boundary or corner cell. By using these flags, the proper boundary 
conditions can be applied to the pertinent cells. 
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FIG. 3. The Marker-and-Cell setup 

In the MAC method au/at is represented by the first-order finite-difference 
approximation 

at4 12 
( 1 

U"fl - u?l 
-m 
at St (7) 

where n refers to the n-th time step and St is the time increment. This approximation 
is obviously crude, but the alternatives are not attractive. The permissible size 
of St is discussed in Section 11, in connection with the problem of numerical 
stability. Terms that involve only space derivatives can be approximated more 
accurately by central differences so from Eqs. (I), (2), (5), and (6), we obtain the 
finite-difference representations 

G,2* = Q+l,2j + St [“fi -$+1, + wi+1/23-l/2 - (~~)1+1,25+1,2 
SY 

+ g, + ci5 - +i+1i 
-I-d 

ui+3/2i + %-112i - 2ui+1/2f 

SX 6x2 

+ 
ui+l12i+l + %+1/2&l - 2ui+112i 

SY” )I (8) 
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n+1 *i*+1,2 = Q3+l,2 + & [ 4 ;yoc+l + wi-1m+1/2 E (~~)*+1,3j+1,2 

+ g, + $53 - Al,1 
$4 

vi5+3/2 + vii-1I2 - 2ViH-112 

SY SY2 

+ 
vd+15+1/~ f vi-lf+l/2 - ~D~s+I/z 

6x2 )I 

Here 

z = 2 sx2 ( L++) 

(9) 

(10) 

(11) 

R . 
i3 

~ (%+13)' + (k13)" - 2(udz + (ui3+1)' + (~ij-d2 - 2(vii)2 

6x2 SY2 

+ SXSY --L k4t+1/25+112 + wi--1/25--1/z - wi+1/25--1/z - wt4,25+l,21 

43 ---v 
St i 

Di+ls + Dt-lj - 2Di1 Dij+l + Dgj-1 - 2Di.j 
SX2 

+ SY” 1 112) 

and 

Di3 z ui+l123 &Ui-l12i + %+1/2 - Vg+1/2 . 
SY 

(13) 

In the above equations, variables with the superscript n + 1 are related to the 
(n + I)-th time step. Variables lacking a superscript are evaluated at the n-th step. 
Because of the errors introduced in the iterative solution of the pressure field 
[Eq. (lo)], plus the inherent errors in finite differences and roundoff by the 
computer, the D terms in Eq. (12) do not vanish in general, whereas Eq. (5) 
indicates that D 3 0 is required to rigorously conserve mass. Thus, an effort 
aimed at making Di, = 0 at the (n + I)-th step is incorporated into MAC calcula- 
tions at the n-th time step. Indeed, the precise form of Eq. (10) is obtained by 
writing Eq. (6) in finite differences and then setting 0::“:’ = 0. Our derivation of 
Eqs. (6) and (10) differs in detail from that in MAC [6]; however, the results are 
precisely the same. The importance of the D terms is discussed in detail by Hirt 
and Harlow [8]. 

Only the finite-difference boundary conditions relevant to the solitary wave 
problem are presented here (cf., [6]). In Fig. 2, cell (i, j) is next to a solid wall and 
cell (i - 1, j) is a boundary cell. For the “free-slip” boundary we have, from the 
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difference analogs of the velocity conditions at a wall described above and Eqs. (8) 
and (13), 

(4 vi4+1/2 = %+1/s 3 k-15-1/2 = "iMl2 

@> &f = Ufj 

(4 WL1/ti+1/2 = 0; e4--1/2m/2 = 0 

(4 h-u = da - g, .6x 

63 h-1121 = 0 

(f) Di, = DQ . 

Some variables in Eqs. (8)-(12) are not directly defined in the u, v fields. They 
must be obtained by an interpolation formula. Simple averages are used in the 
MAC method. For example, 

Ufi = H"f+l/ti + %-l/21) 

vu = i&ii+1/2 + Vii-112) (14) 
@4+1/25+1/2 = Q(Ui+1/2i + %+1/2i+1) . h+1/2 + Vt+11+1/2)* 

In the original MAC method 4 = 4. , the prescribed surface pressure, is assigned 
to the surface cells. Since the I$ field is defined at the center of cells, the condition 
4 = $@ is applied at the center of surface cells rather than at the exact location of 
the free surface. Serious errors may result from this arrangement. It may even 
create the impression that the MAC method is highly unstable. We shall return 
to this point in Section 7, where modifications are suggested. 

5. COMPUTATIONAL PROCEDURES 

An initial condition provides the starting values of u and v. Since the initial 
position of the free surface is known, we can obtain the pressure field by using 
Eq. (10). But, the value of 4 at a given cell cannot be calculated directly from this 
equation because the 4 values at the neighboring cells are also involved. The 
field of 4 values must be obtained simultaneously. The Gauss-Seidel iterative 
(relaxation) method [9] was used. The 4 field can be roughly guessed initially-a 
hydrostatic distribution would be appropriate, for example. Because either 4 
or a#/aN, the normal derivative, is specified along the boundaries, convergence 
of this iterative scheme is guaranteed [9]. Welch, et al., [6] make no recommenda- 
tions on detailed computational procedures; a method of “over-relaxation” was 
used here, employing the formula 

&mv = #‘old + ~(&m~“ted - +old) (15) 

where in general the relaxation parameter w varies from 1.5 to 1.8 for best results. 



76 CHAN AND STREET 

After solving the pressure field, we use Eqs. (8) and (9) to calculate the new 
distributions of u and v. At the same time a new free surface geometry is produced 
by moving the marker particles to their new positions: 

n+1 
xk = xkn + Uk * St 

(16) 
Y;+l = ylc” + Vk . St 

where uk and Uk denote the velocity components for the k-th particle. The values ak 
and vk are obtained by interpolating from the u and v fields, respectively. For 
example, if particle k is situated within the zone bounded by the points where 
u, , uz , ug , and up are defined (Fig. 4), uic can be computed by 

A similar formula iS used to CalCUlate vk . 
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FIG. 4. Linear interpolation for uk 

Now we have completed a cycle of computation, i.e., we have updated the 
u, v, and r# data to a new state. The foregoing procedure is repeated for as many 
time steps as necessary for the investigation. 

6. THE SUMMAC METHOD 

Several difficulties arose when we made the first attempt to calculate the motion 
of large-amplitude water waves by the MAC method. The well-shaped initial 
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wave became irregular after a few time steps of computation. Also, the u and z) fields 
did not vary as smoothly as they should. Because a small viscosity was used this 
experience seemed to confirm the statement that the MAC method is numerically 
unstable for computing low viscosity fluid flows [lo]. 

Usually a formal numerical stability analysis is performed on the governing 
equations of the problem, such as Eqs. (8) and (9). However, improperly applied 
boundary conditions may be a more serious source of errors than the governing 
equations. We have found by experience that the original MAC method can be 
modified to yield very satisfactory results. Most of the changes have to do with the 
free-surface condition. This particular condition is inherently difficult to apply in 
the rectangular mesh system due to the complexity of the surface geometry. 

The modifications presented here were developed by heuristic reasoning since a 
rigorous numerical analysis is difficult, if not impossible. Nevertheless, the modified 
scheme, called the Stanford University Modified Marker and Cell method 
(SUMMAC), has been tested and has produced good results. 

7. IRREGULAR STARS 

It is not proper to impose the condition 4 = & at the center of surface cells. 
Only at the free surface, which does not necessarily coincide with surface cell 
centers, is 4 = & . This difference affects the accuracy of the solution of the 4 field 
which in turn influences the calculations of the u and 21 fields. Unfortunately, 

FIG. 5. Irregular star near a curved boundary 
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features near a curved boundary cannot be adequately resolved by a finite-difference 
scheme unless “irregular stars” (Fig. 5) are used. Therefore, we derived a finite- 
difference form of Eq. (6) and used it to apply 4 = +a at the exact location of the 
free surface by employment of irregular stars. 

Let 71, 72, rls, and 74 be the lengths of the four legs (Fig. 5) and &, $2, $3, +11 
be the values of 4 at the ends of the legs. Using the Taylor series expansion [ll], 
we write 

(20) 

(21) 

We neglect terms of the order 713, 723, etc., or higher. Then, by eliminating the 
(a~#&), term between Eqs. (18) and (19), we obtain 

( ) EL.= 
a9 t, 7173(7;+ & 179#1+ 71#3 - t71+ 73 #d (22) 

Similarly, eliminating (a#/ay), between Eqs. (20) and (21) gives 

( ) azd= 
aY2 i5 q274(7f+ q4) [74#2 + 7?2+4 - (7?2 + 74) ~i31. 

Equation (6) now becomes 

($$)ij + ($t)i5 = -Rij * 

(23) 

(24) 

Finally we get 

%r)i%‘la 
'+" = 2('?2'?4 + '71'73) 

r/3+1+ 7,#, + (25) 
7173 71+ 73 

2 

by substituting Eqs. (22) and (23) into Eq. (24). 
Equation (25) reduces to Eq. (10) when applied to an interior cell, where 

71~ ?a= 6x372 = 7?4= GYP $1 = &+lj, +3= +GI~, 42 = &+land $4 = &-I - 

Thus, Eq. (25) is a more general formula for solving the 4 field. 
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8. EXTRAPOLATION OF THE VELOCITY FIELDS 

The quantities u and v are not defined outside the fluid region, but they are 
needed to carry out the computations using Eqs. (8)-(12) near the free surface 
and to move the marker particles. For the case shown in Fig. 6, uz is set equal 
to u, and v, is set equal to v2 in the MAC method. This arrangement makes 
Dij = 0, but this choice of u2 and v1 is arbitrary because Di, # 0, in general, 
in a surface cell. Indeed, a significant difference between SUMMAC and MAC 
is that in SUMMAC Dij = 0 only in interior cells. Also, consider the case shown 

FIG. 6. The undefined variables ut and v1 
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in Fig. 7. ~nere, uO is set equal to u1 in the unmodified MAC method. Since the 
particle is to be moved according to the interpolated velocity from the u and ZJ 
fields, the particle k will assume the erroneous velocity uk* instead of the more 
accurate value ulc . 

These problems are resolved by calculating the undefined u and u values through 
use of a Gregory-Newton backward interpolation formula [12], e.g., 

Using (&+y), = (u, - u,)/2Sy in Eq. (26) and rearranging, we have 

u, = -.%41 - 524, + 324 - gih. (27) 

Similar considerations are applied to the extrapolation of u and to other orienta- 
tions of the free surface. In a given case we extrapolate the u and v fields far enough 
into the empty space so that all required, but otherwise undefined, variables are 
established. 

9. CALCULATION OF PARTICLE VELOCITIES 

The formula used in MAC to obtain particle velocities from the u and u fields 
is a bivariate linear interpolation formula [see Eq. (17)]. This is adequate in a 
region where u and u change slowly and monotonically. When the particle is 
situated near the maxima or minima of the velocity fields (Fig. 8), however, the 
linearly interpolated particle velocity can be erroneous. 

,V / 

i-l i kTH i+l 
I 

i+2 
PARTICLE 

FIG. 8. Interpolation near a maximum 
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To derive a more satisfactory interpolation formula, consider the particle k 
in Fig. 9. If the particle lies in the shaded area, we can find the velocity component uk 
for the particle by making a Taylor series expansion about the point 0. Neglecting 
the third and higher order terms, we have 

h 
-uo+ x t N ~~,~3)+(~)( “2;“‘) 

+ ; [(-j!J2 64 + u3 - 2%) + (&)” @2 + u4 - 2%) 

(28) 

In a similar manner, a formula can be derived to calculate ok , the y-component 
of the particle velocity. Here, the use of first and second space derivatives is 
consistent with the computation formulas for u and v. 

urs,, “2 ( I’% 
PARTICLE k 

fiG. 9. Second-order interpolation for uk 

10. CALCULATIONS WITH SUMMAC 

The flow chart in Fig. 10 gives an outline of the computational procedure of 
SUMMAC. The general procedure is essentially the same as the one used in the 
original MAC method [6] and outlined in Sections 2 and 5. However, some 

.581/6/e6 



82 CHAN AND STREET 

CALCULATE INITIAL U. 

V, + 8 SURFACE SHAPE 
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CALCULATE U, V FOR 
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STORE U.V. + 

ON TAPE 
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I 

NO 
TIME TO STOP ? I 

FIG. 10. Flow chart for SUMMAC 

additional features are needed to implement the modifications presented in 
Sections 7-9. 

First, a set of input data is used to specify the key parameters of the problem, 
such as the mesh size, 6x, 6~, St, viscosity, etc. Then the cell setup is established 
by assigning to each cell one or more numerical codes to specify its type. The 
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initial condition is set by calculating the marker particle positions and the u and v 
distributions at t = 0. Now, we begin the cycle with a procedure that reflags the 
cells. This procedure has no effect on the first cycle. In the second and future cycles, 
cells near the free surface must be reflagged from cycle to cycle because of the 
continuous change of the surface geometry. 

To calculate 4 by Eq. (25), we must know which cells contain an irreguIar star 
and the leg lengths Q , Q , 7,~~ , r/4 . To establish this, we sequentially number 
(from left to right) the particles that mark the free surface. A cell is then defined 
to be an “irregular-star cell” if its center lies on the fluid side of a free surface which 
intersects at least one of the four strings connecting the cell center with the centers 
of the four neighboring cells. If the free surface is represented by many short line 
segments that connect the surface particles, the distance from the cell center to 
the free surface gives the length of a leg of the irregular star (Fig. 5). The terms Dif 
and Rij are needed in computing &, . As usual we obtain Dii from Eq. (13) and 
Rij from Eq. (12). Then the values of 4 are solved simultaneously by the iterative 
method which was outlined in Section 5, except that Eq. (25) is used for an 
irregular-star cell and Eq. (10) is used for an interior cell. 

Now data of u and v are updated by Eqs. (8) and (9). Remember that these 
velocity components are evaluated on the borders of cells (Fig. 2). In the SUMMAC 
method we compute u and v only at locations where they are defined, i.e., within 
the fluid. For application of Eqs. (8)-(12) near the free surface, the fields of u and a 
have to be extended to the empty space above the surface. Equation (27) is used 
for this purpose. 

Finally, the marker particles are moved to their new locations by the inter- 
polated velocities obtained from Eq. (28). Then the next time cycle beings with a 
reflagging of the cells and the process cited above is repeated. 

11. STABLrLm C~NSIDERI~TIONS 

The nonlinearity of the Navier-Stokes equations that are used in the MAC 
or SUMMAC methods makes it difficult to perform rigorous stability analyses. 
For linear finite-difference equations with constant coefficients, stability can be 
determined by using a Fourier method proposed by von Neumann [lo]. 
Unfortunately, most equations of physical interest are either nonlinear, have 
variable coefficients, or both. A powerful and novel method was proposed by 
Hirt [lo] for investigating the computational stability of such nonlinear finite- 
di.lIerence equations. 

Hirt reduced a finite-difference equation to a differential equation by expanding 
each of the difference-function terms in a Taylor series. The lowest order terms 
in the expansion represent the original differential equation being approximated. 
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All higher order terms constitute the truncation errors caused by the finite-difference 
approximation. The stability of a finite-difference equation can often be determined 
from an examination of these truncation errors [lo]. If only diffusion-like truncation 
errors are retained to order St and 6x2, the finite-difference equations (8) and (9) 
can be reduced, respectively, to 

6~2 a0 a2u + (v-pD2-y&p (29) 

6~2 a0 a2v +(“-+-2-&--y. (30) 

In comparing Eqs. (29) and (30) with Eqs. (1) and (2), we find additional terms 
in Eqs. (29) and (30). Those terms involving St result from the first-order approxi- 
mation to h@t and h/at [see Eq. (7)], while terms containing 6x2 or 6y2 stem 
from evaluating undefined variables by simple average formulas such as Eqs. (14) 
and from computing derivatives of u2, uv, and v2 terms. These additional terms 
represent negative diffusion coefficients so that the finite-difference scheme might 
yield growing unstable solutions if the viscosity v is smaller than the truncation 
error terms. Thus, according to Hirt, the stability conditions for the MAC method 
should be 

St <g and (31) 

where iI is the average maximum fluid speeds and &/ax is the average maximum 
velocity gradient in the direction of flow. 

Equations (31) imply that very fine time steps and space increments are required 
in computing low viscosity fluid motions. In our early attempts to apply the 
MAC method to the study of water waves we were plagued by the fast development 
of instabilities which were manifested by very irregular surface profile and field 
variable distributions. Because small viscosity was used (u/d .\/a < 1.8 x 1O-s), 
it was suspected that the MAC method would not be suitable for computing 
flows with very small viscosity. Then, we tested the same problem by using a very 
large viscosity (v/d %@ = O.lO), which was more than that required to meet 
the conditions of Eqs. (3 1). In the resulting fluid motion the wave speed was found 
to be incorrect compared to experiment; this may be due to the effect of v on the 
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assumed free surface condition & = 0 (see Hirt and Shannon [13]). The insta- 
bilities remained, also. We were therefore led to examine the MAC method more 
carefully. The modifications which have been made were discussed earlier in 
Sections 7-10. We shall demonstrate the improvement in Section 12 by comparing 
the parallel results given by the MAC and the SUMMAC methods. A refinement 
in the evaluation of undefined variables through the use of higher-order inter- 
polations was examined; but as it only reduces the truncation terms involving 6x2 
or 8y2 in Eqs. (29) and (30) by a factor of $ and has no apparent effect on the 
calculations, the refinement was not pursued. With the SUMMAC method, the 
only stability conditions that apparently need consideration are these related to 
the selection of 6t. Because viscosity was not used to stabilize or otherwise control 
computations in our numerical experiment, we presume that St is restricted only 
by the Courant stability criterion [6] 

cst < 2sx sy sx + SY 

(where C is the speed of the surface wave) which restricts the distance a wave 
travels in one time step to less than one space interval. (The diffusional stability 
condition [6] 

vst <A ( 
sx2 sy2 

2 6x2 + sy2 ) 

presents no restriction at all on zero or very low viscosity calculations.) The 
application of the Courant condition to nonlinear systems of equations is based 
on a heuristic extension of linear concepts rather than on direct, rigorous theory. 

By using the Courant condition to choose St, we have obtained very satisfactory 
results for up to 1000 time steps, provided Sx and Sy are of such sizes that important 
features in the fluid motion are sufficiently resolved. It appears that instability 
problems have been avoided in large part in the SUMMAC method; we believe 
that the free-surface modifications are the key changes leading to stable computa- 
tions in this case. A self-correcting mechanism, namely the presence of D terms 
in Eq. (12), operates in the MAC and SUMMAC methods. This corrective effect, 
that results from setting Dz+" = 0 in the finite-difference form of Eq. (6) which 
leads to Eq. (12) and from the interaction between the equations used to find @, 
@+l and vn+l, suppresses the accumulation of D or incompressibility errors [8] 
and apparently stabilizes the entire computation. Hirt’s stability analysis that led 
to Eqs. (29) and (30) did not include the effect of D terms. The formidable task 
of fully analyzing this particular feature of the MAC method remains to be done. 
One way to test the effect of the D terms in Eq. (12) is a direct numerical experiment 
on two parallel computer programs, one of which contains the D terms while 
the other does not. In the present cases, computations without D terms, i.e., 
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assuming all Di, = 0 in Eq. (12), were unusable because the Di3 grew rapidly with 
increasing time and the computations did not remain well-behaved. 

12. RESULTS AND CONCLUSIONS 

As an application of the SUMMAC method, the run up R of a solitary wave 
on a vertical wall has been calculated for a range of I&,/d (see Fig. 1). Laitone’s [14] 
formulas for the free-surface profile and velocity and pressure fields of a solitary 
wave moving over a horizontal bottom were used to compute the initial conditions 
of the incident wave. Laitone used a perturbation method to obtain approximate 
solutions to models of solitary waves in steady motion. The setup of the computa- 
tion region is shown in Fig. 1. 

Theoretically, the length L of a solitary wave is infinite and Laitone’s formulas 
hold for an infinitely long channel only. Because the computations must be done 
in a finite domain and the fluid at a distance from the wave crest is essentially still, 
it is desirable to define a finite, practical length of the solitary wave. The main 
consideration is that the two vertical walls which constitute the boundaries of 
the computation region should be far enough from the initial wave crest so that 
the motion of a solitary wave into the still water in front of a vertical wall can be 
closely approximated. For this purpose the effective wave length L was obtained 
by taking L/2 equal to the distance from the wave crest to the section where 
r] = O.OlH, according to Laitone’s formulas; thus, 

$ = 6.90 (+f2. (33) 

It is seen that the practical length of a solitary wave increases as the amplitude 
decreases. The two vertical walls have to be located at least L/2 away from the 
initial wave crest. When Ho/d = 0.1, for example, the value of L/2 as given by 
Eq. (33) is about lld. As shown in Fig. 1, the walls were set 10d from the initial 
wave crest. Since L is even shorter for higher amplitudes, this setup is adequate 
for Ho/d > 0.1. We also set the left-hand wall at 5d behind the initial wave crest. 
This arrangement resulted in a slight reduction of the run up on the right-hand 
wall because the moving water in the region beyond the left-hand wall that could 
have contributed to the run up was eliminated by the left-hand wall. Thus, it is 
important not to set the walls too close to the initial position of the wave crest. 

A mesh of 40 cells in the x-direction and 25 cells in the y-direction was used to 
represent the computation region. We used 6x = 0.5 and Sy = 0.1 for the case 
H,,/d = 0.2. The reason for using much smaller vertical than horizontal spacing 
is that we know a priori that the field variables change more rapidly in the vertical 
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direction than in the horizontal direction. As an experiment, a finer mesh, with 
6x = 0.25 and Sy = 0.08, was also used to compute the same case. The difference 
in the results was, however, insignificant. The Courant condition, Eq. (32), was 
used to determine the time increment 22. The speed of wave C is approximately 
(1 + 0.2)lj2 = 1.095 for H,/d = 0.2. Then, from Eq. (32), 

&<------- 1 2(0.5x0.1) = 
1.095 0.5 + 0.1 

o * 152 

We chose a moderate value of 6t = 0.10 for our computations. We also tried 
6t = 0.05 and 6t = 0.20. The use of 6t = 0.20, which violates Eq. (34), resulted 
in a significantly different solution with a sign of instability in the distributions of 
the field variables. When 6t = 0.05, we found a small amount of improvement 
on the solution obtained by using 6t = 0.10. The difference is not significant and 
we are led to believe that further reduction in St is not necessary. 

The viscosity of water has the nondimensional value v/d ~‘a = 1.8 x 10-6. 
Zero viscosity was used in all the present cases; however, as noted earlier, viscous 
terms were retained in the derivation and computer program in the expectation 
that our future studies would involve viscous effects [see Section 131. We were able 
to obtain stable solutions for zero viscosity for all cases run (up to a maximum of 
1000 time steps). 

The wave run up ratio R/d, as computed by the SUMMAC method, is compared 
with experimental data [5] in Fig. 11. Clearly, the SUMMAC method yields 
results that are in excellent agreement with experiment. This is expected of 
numerical methods in which the governing equations and boundary conditions 
are more or less uniformly approximated by the finite-difference scheme. 

The contour lines of the u, u, and 4 fields are shown in Figs. 12, 13, and 14, 
respectively. These plots describe the motion of a solitary wave with Ho/d = 0.5 
as it approaches the wall at t/dqg = 5.4 and are examples of the information 
that can be obtained. In the present problem we used three rows of marker 
particles near the free surface; only the row that marks the free-surface position 
has real significance in our examples and is shown, However, more particles can 
be used in the interior of the fluid if details on the particle movement there are 
desired. Generally, we use as few particles as possible to conserve the storage of 
the computer. Successive stages of wave deformation are shown in Fig. 15 for the 
case H,,/d = 0.5. The free-surface configurations were obtained by plotting the 
surface particle coordinates using a CALCOMP plotter. 

As discussed in Ghan, et al., [15], the velocity distributions given by Laitone [14] 
are not valid for a solitary wave with fairly large amplitude. Generally speaking, 
a more accurate knowledge of u and v is needed for waves higher than Ho/d = 0.4. 
For the case H,,/d = 0.5, an initial condition based on Laitone’s perturbation 
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analysis was tried; however, the condition D = 0 was seriously violated in certain 
parts of the flow region. Also, the resulting wave propagated with an erroneous 
celerity. To surmount this difficulty, we used a highly accurate steady-state solution 
which was derived by Chan, et al., [15] as the initial condition for waves with 
Ho/d > 0.4 (in Fig. 15, for example). 

In a key test of the method, a wave was reflected from the wall and returned 
to its initial position for the case Ho/d = 0.2. The reflected wave had exactly the 
same surface profile as its corresponding incident wave. This confirms the observ- 
ation and expectation that water particles in a totally reflected wave retrace, but 
in the opposite direction, their original paths in the incident wave. 

We have found, by direct numerical tests and comparisons, that the use of 
irregular stars to compute dij and the extrapolation of velocity fields had the 
most drastic effect on the output from the original MAC method. In Fig. 16, 
the improvement resulting from the more accurate SUMMAC computation 
of & is manifested by the smooth particle alignment on the free surface as 
contrasted to the highly irregular shape obtained by the unmodified version of the 
method for waves generated by periodic pressure distribution on the free surface. 

To examine the effect of extrapolating the velocity fields near the free surface, 
we plotted the time history of the horizontal velocity distribution under the wave 
crest (Fig. 17). On these plots, it is seen that in the original method a decrease 
in u is incorrectly imposed near the free surface. As time increases, this error is 
convected with the wave and, at the same time, the error is diffused into the 
interior of the fluid region. This type of error accounts in part for ragged surface 
profiles such as that shown in Fig. 16. On the same plots (Fig. 17), velocity protiles 
of u after the extrapolation and irregular-star modifications were implemented 
are also shown for comparison. 
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FIG. 17. Comparison of u distribution under the wave crest 

The improvement of particle movement through the use of Eq. (28) is prominent 
only in very curved portions of the free surface, where the linear interpolation 
formula Eq. (17) tends to level out the curve. In the study of wave run up, for 
example, the extremely curved water surface near the wall at the maximum run up 
requires this special treatment. 

The application of the SUMMAC method to the present example has been 
successful. The results presented above clearly indicate that useful and reliable 
results can be obtained by this numerical method. For the problem under considera- 
tion, a typical computation requires about 80 time steps before the maximum 
run up is reached. This takes about 8 minutes of execution on the IBM 360/67 
system. The storage requirement was about 160 K bytes (40,000 words). Thus, 
the SUMMAC method has been shown to be a feasible method for the study of 
two-dimensional water waves and their effects on hydraulic structures. 

13. FUTURE APPLICATIONS 

The successful application of the SUMMAC method to the run up of a solitary 
wave indicates the possibility of employing the same technique to attack a wide 
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variety of water wave problems. This extension will prove to be most valuable 
in problems where analytic methods are difficult, if not impossible. 

As an example, the shoaling of waves on a sloping beach can be easily simulated 
if the method is modified further to include the required special treatment of 
the boundary conditions on the beach. For ease of handling the beach boundary 
conditions, the beach will be taken to coincide with the cell diagonals. By varying 
the rectangularity ratio $+3x, various slopes of practical interest can be obtained. 
Another possibility will be continued study of waves generated by a pressure 
disturbance on the free surface as shown in Fig. 16. On physical grounds, a periodic 
pressure variation along part or the whole of the free surface will eventually 
produce a train of periodic waves. Fangmeier [16] demonstrated examples of this 
kind by using time-dependent potential flow equations. He used a single-valued 
function 7(x, t) to describe the free-surface position. However, the waves had a 
tendency to form infinitely high peaks as they neared the usual breaking point. 
Actually, the wave crests should curl forward slightly and the single-valued 
function r] was simply no longer adequate to describe the complex wave shape. 
With the SUMMAC method, this is no problem. In fact, at present we can study 
the onset of breaking until mixing occurs or turbulence becomes significant, 
and recent studies by Gawain and Pritchett [17] show that a phenomenological 
simulation of turbulence in the SUMMAC framework is feasible. 

The computer program that we have at hand is not yet fully operational as a 
design tool. However, it will not be difficult to develop a general program that 
then can be specialized to specific programs under study by specification of key 
parameters. 
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